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The genesis, theoretical basis and practical application of the new electron holographic dark-field
technique for mapping strain in nanostructures are presented. The development places geometric
phase within a unified theoretical framework for phase measurements by electron holography. The
total phase of the transmitted and diffracted beams is described as a sum of four contributions:
crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the
proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental
conditions, phase reconstruction and analysis are detailed for off-axis electron holography using
examples from the field of semiconductors. A method for correcting for thickness variations will be
proposed and demonstrated using the phase from the corresponding bright-field electron hologram.
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1. Introduction

Electron holography has been used for an ever widening range
of applications ever since its invention by Gabor [1]. In his original
conception, the measurement of the phase of the wave front would
allow the determination of the aberrations of the optical system,
and hence their elimination. This objective has been pursued and
perfected in the field of high-resolution off-axis electron holography
[2,3]. In the medium-resolution variety, understood as the mea-
surement of the phase of the transmitted beam with respect to the
vacuum, electron holography has been used to confirm the exis-
tence of the phase change due to the magnetic vector potential [4].
The local in-plane projection of the magnetic field can thus be
determined [5], which has led to the development of the metho-
dology for the quantitative study of magnetic fields at the nanoscale
[6,7] and direct comparisons with micromagnetics modelling [8,9].
Similarly, the phase changes due to slowly varying electrostatic
fields have been studied by medium-resolution holography, from
the measurement of mean inner potentials of materials [10], to the
potential drop across p-n junctions [11], the mapping of dopant
concentrations in semiconductors [12], and the electric fields
around emitting tips [13]. Indeed, the combination of electron
holography and electron tomography heralds an era of many new
results [14,15]. The current state of the art can be found in a
number of reviews [16,17,18] and the recent Hannes Lichte 65th
birthday issue of Ultramicroscopy [19].
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However, electron holography is not limited to the measure-
ment of these phases, as we will show. Geometric phase can also
be measured and quantified by electron holography [20,21] using
the dark-field electron holography (DFEH) configuration [22]. The
technique has opened up a new range of applications for measur-
ing strain in crystalline materials, notably in the field of semi-
conductor devices and thin films [23-27].

Geometric phase had previously been measured primarily by
high-resolution electron microscopy (HRTEM) [28]. Its influence
on conventional diffraction contrast has been recognised since
almost the origins of electron microscopy [29] and from a more
formal point of view, it is related to Berry phase, also known as
geometric phase [30]. In electron microscopy, however, geometric
phase usually refers to the variation of the phase across the wave
front and not in the direction of propagation. In retrospect, it is
natural to think that geometric phase could be measured directly
by electron holography.

Our first attempt to measure geometric phase with electron
holography was to analyse high-resolution electron holograms
(HREH) in a similar way to HRTEM images [31]. Unfortunately the
benefits are limited with respect to the latter technique and led to
the idea of measuring the geometric phase directly from the
diffracted beam [20]. The dark-field off-axis electron holography
configuration we used was, in fact, a rediscovery of previous work
by Hanszen, which had been left largely forgotten [22]. Whilst off-
axis electron holography is a particularly efficient and accepted
means to determine phases, there is no reason that other
holography schemes should not be explored, such as by using
in-line holography in a follow up to our experiments [32]. Indeed,
there are more than twenty holographic configurations, which
can be pursued [33].
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The aim of this paper is to outline the theory that led to the
idea of dark-field holography, to describe the experimental setup
and conditions, and to identify the systematic and random errors,
which can influence the accuracy and precision of the strain
measurements. The theoretical development will lead to a propo-
sal for correcting systematic errors due to thickness variations.
Examples will be given to illustrate both the method and the
application of corrections. Whilst the experiments are all carried
out in the off-axis mode, the theory and analysis are general to the
other configurations of electron holography. Indeed, the benefits
of off-axis with respect to in-line holography are expected to be
the same as for other applications of medium-resolution hologra-
phy and are not specific to dark-field experiments. For a direct
comparison, see for example Ref. [34].

2. Electron holography

The different configurations for off-axis electron holography
that will be discussed in this paper are shown schematically in
Fig. 1. Plane-wave illumination is formed from the highly localised
source and directed towards the object. In the conventional setup
(Fig. 1a) part of the electron wave passes through the specimen
and the other part through the vacuum. These two beams are
deflected with the aid of a tuneable electrostatic biprism, so that
they overlap to create an interference pattern on the screen. The
electron hologram then encodes the phase difference between the
electron paths through the vacuum and through the specimen.
These phase shifts can be due to the presence of magnetic fields,
electrostatic fields (including the crystalline atomic potential) and,
as we will show, displacement fields.

The electron wave passing to the left, y;, and right, Y, of the
biprism will interfere to produce holographic fringes of intensity
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where ¢.= kg—k; is known as the carrier frequency, and
¢r.=¢r— ¢1, the phase difference. The phase of the hologram
can be extracted by one of the phase retrieval methods, such as
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the Fourier transform method, assuming a particular carrier
frequency.

Eq. (1) is only valid for a single electron and needs to be
integrated over the many electrons forming the image during the
exposure time. The finite size of the electron source will limit the
spatial coherence of the illumination and hence diminish the
fringe contrast. Instabilities of the biprism (position and poten-
tial) will likewise reduce the fringe contrast as will the modula-
tion transfer function (MTF) of the detector. All these factors will
reduce the precision of the phase measurements.

2.1. Phase contributions

In most descriptions of medium-resolution electron hologra-
phy, only the phase change of the transmitted beam is considered.
Here, we will interest ourselves with the phase changes of both
the transmitted and the diffracted beams created by a crystalline
specimen. In addition, we will consider that the crystal is non-
uniform; though departures from the norm will be treated as a
perturbation. The wave function of the fast electron at the exit
surface the crystal,y/(r), can then be written in the following way:

YOy =)_ Yy (me’mer )

where r is in the xy-plane, conjugate with the image plane, and g
the reciprocal lattice vectors of the perfect, or “reference”, crystal
[35]. Forward momentum is implicit and g also includes the
transmitted beam. The imperfections of the crystal are treated
entirely within the local Fourier components,j¢(r), which have a
local amplitude and phase:

Py (1) = ag(r)ee® 3)

corresponding to the complex amplitudes of the transmitted and
diffracted beams as a function of position across the exit surface
of the crystal [36]. The phases here refer uniquely to the phases of
Fourier components in reciprocal space and not those of the wave
function in real space. We choose to write these phases as having
four components:

Dg(r) = PS(1)+ g (1) + Py (1) + Pi(r) @)

where C refers to the crystalline lattice, M the magnetic contribu-
tions, E the electric fields and G the geometric phase [37]. This
subdivision will always remain, to some extent, artificial since
from a physical interaction standpoint, there are only two sources
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Fig. 1. Off-axis electron holography schemes: (a) conventional setup with specimen (O) and reference (vacuum); (b) bright-field holography with crystal (B) and reference
crystal (A); (c) dark-field holography with strained crystal (B) and unstrained crystal (A).
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for phase changes: electrostatic and magnetic. Furthermore, this
description works best in terms of the column approximation and
for weak fields. If the fields are strong and rapidly varying, there
will be an interplay between the phase components due to
dynamical scattering. As the description stands, the crystalline
phase terms can be highly dynamic if the other terms can be
treated as a perturbation. The usefulness of splitting the electro-
static component into three terms (C, E and G) will hopefully
become apparent in the following.

2.2. Crystalline phase

The phase term induced by the interaction with the crystalline
lattice is the most familiar in electron microscopy and diffraction
physics. The electrostatic potential, V(r), of a crystal can be
written:

V) =) Vge* 8T ()
g

where the Fourier components, Vg, have phases, ([)g. Here, we
explicitly state that the origin of the real-space coordinate r
coincides with a point of symmetry in the unit cell. The incident
electron will be scattered by this potential distribution and at the
exit surface of the crystal will have a wave function described by
Eq. (1) and has been exhaustively studied in the framework of
kinematical and dynamical theory of diffraction. The essential
result is that in general:

bg # g (6)

Much effort has been applied to retrieving the phases of the
diffracted beams and to determine the atomic crystal structure
but in the following, we are not interested in the configuration of
atoms within the unit cell but the variations of the lattice from
unit cell to unit cell. Crystalline phase will therefore be more of a
hindrance than an aim.

In our description, the phase changes due to the mean inner
potential, V,, will be treated along with other electrostatic fields,
E. The crystalline phases ¢§ therefore assume a zero mean inner
potential, i.e., (/)Z =0, which in no way affects dynamical scatter-
ing calculations for perfect crystals except for a constant phase
shift of all the beams. Note that this does not exclude dynamical
effects producing phase changes in the transmitted beam, and as
a consequence ¢>0C # 0 [38]. A local change in composition would
also produce a change in the crystalline phases, but the main
effect will often concern geometric phase, G.

2.3. Electrostatic phase

As mentioned above, crystals have a mean inner potential V,
with respect to the vacuum (taken as zero). This produces a
uniform phase change of the wave front of the fast electron,
equivalent to adding a constant phase to the transmitted and
scattered beams. As with crystalline potential, the mean inner
potential (MIP) can vary as a function of position becoming V,(r)
due to changes in composition or density (including absence of
material). We can also anticipate that the mean inner potential
will vary with strain, as the local density will change. Electrostatic
and geometric phases will therefore be correlated to some extent.
The correlation will nevertheless be small and indirect, as the
mean inner potential is only affected by volume changes (and not
by individual strain components).

External or internal electric fields will also have an associated
electrical potential, Vg(r), whose gradient is the electric field, E:

E=—VV() Q)

The total electrostatic potential, Vg(r), will therefore be the
sum of these two terms:

VE(r) = Vo(r) + Vi(r) ®)

For slowly varying electrostatic potentials (i.e. weak electric
fields), the corresponding phase shift is obtained by integrating
the potential along the path of the fast electron:

P =ce / VE(r)dz )

with ¢ the electron interaction constant given by

n _2n  Ex+Ep

E=JE = 7 Ex(Ec+2Eo) (10)

where £ is the electron wavelength, E the total energy of the fast
electron, which depends on the energy at rest E; and kinetic
energy E, determined by the accelerating voltage.

Naturally, Eq. (9) applies equally well to an infinitely thin
crystal of electrostatic potential given by Eq. (5). The electric field
could be external, placing the specimen between two electrodes,
or internal due to an accumulation of charge or due to piezo-
electricity of the sample. We have chosen to separate C and E
because of these different physical origins. Placing electrostatic
potentials for different atoms in the unit cell will create the
crystalline potential V(r) but will never recreate the piezoelectric
effect. The other difference is that V(r) is made of discrete
periodicities, g. We will assume that Vy(r) and Vi(r) are smoothly
varying and on a length scale larger than the unit cell.

For most samples:

dgo=0"" (11

with the indicial notation indicating that the phase change will be
the same for all beams, whether transmitted or diffracted.

2.4. Geometric phase

The originality of this description lies essentially with the
geometric phase term and was the reason for explicitly dealing
with the phases of the diffracted beams. Let us assume that the
crystal has been bodily translated by a vector, u:

r-r—u (12)

The wave function of Eq. (1) will become:

l,b(l‘—ll) = Z[//ge*Znig’ueng-r 13)
g

The extra phase term induced by the crystal translation is
given by

qﬁg =-2ng-u 14)

which is our definition for geometric phase. If our spatial origin in
real-space is different to a symmetry point of the unit cell defined
previously, all the diffracted beams will assume a phase shift. As
previously, we will assume that this relation holds true for a
varying displacement field:

dg(r) = —2ng-u(r) (15)

This equation is only strictly true for small displacement fields
but large distortions can be treated by studying the phase
gradients (and see later) [28].

Apart from distortion of the crystalline lattice due to strain, we
shall consider that geometric phase also contains information about
variations in local composition that can be described as a distortion
of the basic lattice. Typically, this concerns compounds where a
compositional variation produces a change in the lattice parameter
without changing the crystal symmetry. The change in the complex
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diffracted amplitude due to the different scattering potential will be
incorporated into the crystalline amplitude and phase (C), and the
mean inner potential in the electrostatic phase (E).

Take for example the case of fluctuations of germanium
content in SiyGe;_, with mean composition SiGe as the reference
lattice. The amplitude of the (1 1 1) diffracted beam will vary with
the local Ge concentration, and will be included in the amplitude
a§,,(r). The distortion of the crystalline lattice will be described by
¢71;(r) and any remaining phase changes by d)f“(r). Separating
geometric phase from the crystalline and electrostatic phases will
be important for the method in such cases.

2.5. Magnetic phase

For completeness, we include a description of the phase
changes introduced by the presence of magnetic fields. The phase
shift is given by

¢M=f%/AAnM (16)

where A is the magnetic vector field and z the direction of
propagation. This magnetic field can result from an externally
applied magnetic field or the magnetic field of the specimen.
Given the definition of the magnetic vector potential:

B=VAA 17)

the component of the magnetic field in the propagation direction
does not produce a phase shift. From these relations, it can be
shown that:

/ B,y (1)dz = g(i/\ Vo) (18)

where By, is the component of the magnetic field in the xy-plane,
and z the unit vector in the propagation direction. In other words
the iso-phase contours are equivalent to the magnetic field lines
viewed in projection.

2.6. Dark-field electron holography (DFEH)

The geometric phase is only present in the diffracted beams
and therefore cannot be measured by the conventional off-axis
electron holography setup (Fig. 1a). It was in this context that
dark-field electron holography was imagined [20] in complete
independence to previous work [22]. The crystal is oriented in
diffraction conditions for one of the lattice planes and the
illumination conditions tilted so that the emerging diffracted
beam is aligned with the optic axis, exactly as for conventional
dark-field imaging, and an objective aperture applied to eliminate
the other diffracted beams. A hologram is created from the
interference between the diffracted beam emanating from an
unstrained region of crystal, which serves as the reference, and a
beam from the region of interest of strained crystal (see Fig. 1c).
The relative phase of the diffracted beam between the two
regions can then be determined from the dark-field hologram,
assuming a suitable calibration of the carrier frequency. The dark-
field holography configuration has an interesting advantage over
the conventional setup. Assuming the specimen thickness is
uniform, the amplitudes of the two beams, a; and ag, will be the
same and therefore the holographic fringe contrast is maximised
(see Eq. (1)).

To measure the geometric phase component, the other phase
terms, notably crystalline and electrostatic phase, must be elimi-
nated. To a first approximation, these two phases do not depend
directly on the local strain. Therefore, if the sample is uniformly
thick, these terms will cancel out and a direct measurement of
geometric phase obtained. Indeed for the measurement of strain,

which depends on the phase gradient, it is only necessary that the
gradient of the non-geometric phase terms be zero, or the
gradient of the difference. Fortunately, the requirements for
uniform thickness are not as stringent as for the measurement
of dopant distributions since the geometric phase variations are
generally quite large, as the examples will show. For the crystal-
line phase to be constant, the diffraction conditions must also be
uniform over the two regions. Regions exhibiting bend contours
should therefore be avoided.

The situation is more complex in the presence of composi-
tional variations, as these will introduce additional crystalline and
electrostatic phase terms. Significant and localised phase changes
can occur at interfaces, which are therefore difficult to eliminate
from the analysis (see later).

Finally, the measurement will provide the relative distortion of
the reference lattice and the region of interest. Therefore, a strict
mechanical strain analysis requires the reference region to be
unstrained, otherwise a systematic error will arise. Note, that
there is no fundamental reason why the reference region must be
the same material as the region of interest, provided that it
diffracts within the objective aperture. Only the interpretation
requires a suitable adaptation. A common example is for an
expitaxial strained layer of different composition to the substrate.

2.7. Bright-field electron holography

We will call the equivalent setup for the transmitted beam, the
bright-field electron hologram (Fig. 1b). Here, the transmitted
beam from the region of interest is interfered with that emanat-
ing from the reference region of crystal, and not with the beam in
the vacuum as for the conventional setup (Fig. 1a). This config-
uration is of primary interest for assessing, and correcting the
systematic errors of the dark-field measurements since for the
transmitted beam, the geometric phase component should be
zero (Eq. (14)).

3. Experimental details

Two test samples will be used to illustrate the technique, an
array of dummy p-MOSFET transistors with embedded Sig;Geg 3
sources and drains [20], and an etched silicon structure coated
with a strained nitride layer [25]. TEM specimens are prepared by
focussed ion beam (FIB) to a thickness of between 100 and
150 nm. Observations are carried out on the SACTEM-Toulouse,
a Tecnai (FEI) 200 kV TEM equipped with a Cs corrector (CEOS),
rotatable biprism and 2 k CCD camera (Gatan). Specimens were
oriented close to a [1 10] zone axis. The microscope is operated in
a pseudo-Lorentz mode using the corrector first transfer lens as a
Lorentz lens and with the main objective lens and hexapoles
switched off [39]. Typical fringe spacings are 1-2 nm, fringe
visibilities of around 20%, and hologram widths from 300-
500 nm allowing lengthwise fields of view of several microns.
Strain fields are extracted using HoloDark 1.0 software developed
in collaboration with HREM Research Inc. as a plugin for Digital-
Micrograph (Gatan).

In principle, there is no restriction on the diffraction condi-
tions. However, we have found that a Bragg condition on a
systematic row, close to a zone axis is preferable for reasons
which will be discussed later. Secondly, the biprism should be
placed “within” the reference region, relative to the projected
image, so that a region of the interference is produced between
the reference, A, and part of itself, A’ (Fig. 2a). This provides an
internal reference within the hologram of the carrier frequency.
This procedure avoids determining the carrier frequency from a
subsequent conventional hologram, which is not always reliable.
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Fig. 2. Dark-field electron holography: (a) a diffracted beam from an unstrained region of crystal (in blue) is interfered with the same diffracted beam emanating from the
region of interest (in yellow) with aid of biprism wire (red). Providing the crystal is of uniform thickness, the non-geometric phase terms cancel, or only produce a uniform
phase change to a good first approximation, thus yielding the geometric phase component; (b) typical transistor geometry with reference zone in substrate and active
region at the surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A typical example for these two regions would be the substrate
(A,A’) and an active region of a device (B) (Fig. 2b). Note that the
orientation of the biprism is unrelated to the direction of the
diffraction vector. Its main function is to define the two regions
and is generally placed to maximise the field of view.

3.1. Reconstruction method

Once the hologram is recorded the geometric phase can be
retrieved. The procedure we use is based on the Fourier transform
and necessitates the correct choice of side band, which can be
understood using Fig. 3. The crystal diffracts into the transmitted
beam, O, and diffracted beams from the undistorted crystal, A and
A/, and the strained region of crystal, B. The objective aperture is
used to select only these diffracted beams. The biprism deflects
these beams depending on whether they pass to the left (A) or the
right (A’,B). The relative deflection is denoted by q., the carrier
frequency. In this example, the voltage of the biprism is positive
and is placed before the image plane. As usual, the Fourier
transform of the holographic fringes will have two side bands. It
can be seen that the direction of Ag, the difference in reciprocal
lattice vector, is unaltered in the side band pointing towards the
substrate. It is this side band that we choose to reconstruct. Using
the other side band simply changes the sign.

It is interesting to note that in this example, the region of
crystal (B) with the smaller lattice spacing produced fringes (A-B)
of a wider spacing than the reference region (A-A’). Indeed, this is
the preferable condition to increase precision. Results with the g
and -g diffracted beam will not therefore be identical from a
practical point of view for the same biprism conditions.

The reference region of phase, A-A’, can be conveniently used
to define both the unstrained state and the carrier frequency. Any
phase gradients elsewhere in the hologram indicate a difference
in local lattice parameter or orientation, as for geometric phase
analysis. One important difference with GPA of HRTEM images, is
that there is no internal reference for the undistorted lattice
spacing, g. To determine the g-vector in image coordinates, the
corresponding lattice spacing, dg, needs to be known along with
the magnification of the hologram and the direction of the
diffraction vector with respect to the image. This is not necessa-
rily trivial, as our measurements are carried out in free-lens
Lorentz mode. Careful attention therefore needs to be paid to
calibrating magnification and rotations between diffraction and
image planes. Alternatively, image features can provide internal
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Fig. 3. Side-band selection for dark-field holography. See text for details.

calibration (for example, the spacing between devices) or recog-
nisable crystallographic directions (for example, surface normals,
or growth directions). The biggest error is to mistake the direction
of g, which will invert the sign of the results and make compres-
sive strain seem like a region of tensile strain, or vice-versa.

3.2. Strain tensor

The strain in the direction of the diffracting vector g, can be
determined directly from the gradient of the phase [28]:

—_ ‘1 G
Ag = 5-—dg (19)

Indeed, as for geometric phase analysis, this equation is more
accurate than the interpretation in terms of displacement
(Eq. (15)). The difference in reciprocal lattice vector, Ag, can be
determined unambiguously from the hologram but to determine
percentage changes in lattice parameter and orientation the
length and direction of g is required, as discussed above. Using
the (2 2 0) diffracted beam in the (00 1) grown strained-silicon
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Fig. 4. Strain tensor mapping for a strained-silicon p-MOSFET transistor: (a) dark-field hologram from g;=(—1 —1 —1) diffracted beam; (b) dark-field electron hologram
from g,=(—1 —1 1) diffracted beam; (c) (-1 —1 —1) phase; (d) (=1 —1 1) phase; (e) 2D displacement calculation and corresponding strain tensor components.

transistor example, the strain could be measured in the direction
parallel to the specimen surface from source to drain [20].

To determine the 2D strain tensor, holograms need to be taken
for two non-collinear diffraction vectors, g; and g,. For the [1 1 0]
zone-axis samples, we typically choose two {11 1} diffracted
beams. The result from the experiment is shown in Fig. 4. The
results can then be combined to determine the full in-plane strain
tensor, ¢ and rigid-body rotation, w;; [20]. The difficulty with
respect to HRTEM image analysis is that the holograms need to be
aligned correctly. There is always some specimen or image shift
between the two holograms, especially since we slightly reorient
the crystal to a new diffraction condition between exposures.
Fortunately, this alignment procedure is facilitated in that the
technique is a medium-resolution technique. We either use the
phase images or the amplitude images to identify equivalent
sample areas. Ironically, uniform layer samples are therefore
more of a challenge than devices.

4. Analysis

The technique has a number of advantages over geometric
phase analysis of HRTEM images for the study of similar transis-
tors [40]. The specimens do not need to be as thin, being more like
those of conventional TEM. Specimens are therefore easier to
prepare and the effects of thin-film relaxation reduced. The
holographic interference fringes are much more stable than those
of HRTEM images, which are highly sensitive to defocus, thickness
and compositional changes. The major advantage, however, is the
ability to analyse large regions of crystal at relatively low
resolution. Furthermore, the sources of error are much easier to
apprehend.

4.1. Precision

Random errors limit the precision of the measurements, some
of which are inherent to off-axis holography and others that are
more specific to dark-field holography. They are caused by the
electron source, the specimen (thickness, amorphous layers,
uniformity and contamination), and the detector. Consider the
random errors in measuring the phase, and phase gradients, from
an electron hologram. These will be influenced by the fringe
contrast and the mean number of electrons forming the image.
The mean intensity is determined by the diffracted intensity, the
exposure time and quantum efficiency of the detector. The factor
specific to dark-field holography is that the diffracted intensity
needs to be maximised.

We choose, therefore, to align the specimen in such a way as to
reproduce 2-beam conditions as closely as possible for the
diffracted beam of interest. For the exact Bragg condition, the
ideal thickness is then (n+(1/2)), where n is an integer and &,
the extinction distance. For other thicknesses, the effective
extinction distance can be modified by tilting slightly away from
the Bragg condition, a common procedure in conventional dark-
field imaging. Following the same logic, it is usually beneficial to
acquire dark-field holograms with the {11 1} diffracted beams
instead of the {004} beams, which are generally less intense,
even if the higher-order beams are more sensitive to strain (see
Eq. (15)).

The fringe contrast depends on the spatial coherence of the
illumination conditions, the modulation transfer function (MTF)
of the detector, the biprism stability, the mask used in Fourier
space, the relative amplitude of the two interfering beams and the
specimen stability. The latter, however, is a limited problem
compared with HRTEM given the spatial frequencies involved
(typically less than 0.5nm~! in the Lorentz mode). The spatial
coherence and the incident intensity are linked by the brightness
of the electron source. The only specificity of dark-field electron
holography with respect to conventional off-axis holography is
that the amplitudes of the two interfered beams will be nearly
identical, leading to maximal fringe visibility as mentioned
previously.

Regarding the specimen, amorphous layers on the top and
bottom surface of the sample, imperfections within the crystal,
and contamination will produce “noise” in the phase image. Apart
from improving the specimen preparation, this can be minimised
by choosing the same size of objective aperture as the mask used
in the Fourier analysis. Unuseful diffuse scattering will not then
contribute to the background intensity. Indeed, this is a recom-
mendation that we can make for conventional medium-resolution
holography.

For an estimation of the precision, we measure the standard
deviations of the strain measurements within a region of the
reference (A-A’). Reducing the mask radius in the Fourier analysis
will increase the precision, but at the expense of spatial resolution.

4.2. Spatial resolution

Technically, the spatial resolution of the reconstruction is
determined by the radius of the Fourier mask used in the proces-
sing as this excludes spatial frequencies above a certain value. The
maximum this can reasonably be is twice the holographic fringe
spacing. For a given mask radius, finer fringe spacings will not
improve the spatial resolution. More importantly, the spatial



1334 M. Hjjtch et al. / Ultramicroscopy 111 (2011) 1328-1337

resolution of the actual strain information is the ultimate limit.
This is determined by the transfer function of the objective
(Lorentz) lens, damping higher resolution details, and the specimen
stability (drift and vibration) which will do likewise. An additional
factor that degrades spatial resolution is the use of Bragg condi-
tions rather than zone-axis orientations. Most interfaces will
therefore be inclined when viewed in projection. However, the
corresponding blurring is typically smaller than the above men-
tioned factors. The overall spatial resolution of our setup is about
2.5 nm, so there is no point in interpreting strain measurements on
a smaller scale.

4.3. Systematic errors

Systematic errors in conventional off-axis holography are
caused by the Fresnel fringes and geometrical distortions from
the projector lens system of the microscope and the detector
itself. The latter two influence the measurements exactly as for
HRTEM and can be corrected for in the same way [41]. The Fresnel
fringes are inherent to off-axis holography with a single biprism
and can be removed to some extent by Fourier filtering. The best
method is to use multiple biprisms to produce holograms without
the Fresnel fringes in the first place [42].

More specific to dark-field holography is that the crystalline
phase is not necessarily uniform across the measurement area
(see Eq. (4)). This can be due to a change in thickness, specimen
composition, diffraction conditions (specimen bending) or strain.
The degree of tilting can be estimated from any bend contours
that might be present. Similarly, the electrostatic, or most
frequently the mean inner potential term, needs to be uniform.
It is encouraging to note that the geometric phase is very large
(several multiples of 27, see e.g., Fig. 4) compared with the phase
changes for dopant profiling (of the order of n/6, see e.g.,
Ref. [12]). Dark-field holography benefits therefore directly from
the efforts made in that field to control specimen preparation,
whilst at the same time having fewer requirements.

However well we measure the strain state of the thinned
specimen, this is not identical to that of the bulk sample. As is
well known, thin-film relaxation will occur at the two free
surfaces [43]. The magnitude of this effect depends on the aspect
ratio of the strained area to the specimen thickness. Measuring
the strain in a narrow transistor channel will therefore be closer
to the bulk value than for a wider gate length. The option we have
chosen is to systematically perform finite-element method (FEM)
modelling of the thin and bulk samples to estimate, and correct
for, the error introduced by thin-film relaxation [20,23-25].

5. Corrections
5.1. Quantifying systematic errors

Systematic errors in the analysis can be apprehended in
different ways, the most obvious being to verify that the mea-
sured strain is indeed on an average zero in the reference region
A-A’ and that no systematic variations are visible. Another way is
to compare two independent measurements, for example using
different diffracted beams. Continuing the transistor example, the
phase was also determined for the (220) diffracted beam
(Fig. 5a). This phase was compared with the equivalent phase
calculated from the previously shown (—-1-1-1) and
(=1 —11) phases (i.e.,— ¢g1 — ¢g2) (Fig. 5C).

The most pronounced effect is at the interface between the Si
substrate and the embedded regions of SiGe where a phase jump
is clearly visible in the reconstructed phase (Fig. 5¢) and in the
phase difference (Fig. 5e). It is natural that the crystalline phase
and electrostatic phase be different between the two materials.
Interpreting the strain determined at such an interface is there-
fore hazardous. The phase gradient within the SiGe in the phase
difference (Fig. 5e), is probably due to a difference in the crystal-
line phases between the {11 1} and the (2 2 0) diffracted beams.
We can estimate the systematic error in the strain from the

-3% M 13%

Fig. 5. Analysing systematic errors in dark-field holography: (a) phase of (22 0) dark-field hologram; (b) corresponding (2 2 0) strain; (c) equivalent (2 2 0) phase
calculated from (=1 —1 —1) and (=1 —1 1) hologram phases; (d) corresponding (2 2 0) strain; (e) phase difference of (a)-(c); (f) strain difference of (b)-(d).
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deformation map (Fig. 5f) to be 10~ within the SiGe. This was
determined from the average deformation measured in the island
with respect to the substrate. In fact, for this case, the main
systematic error is in the rotation, since the phase gradient is
mainly perpendicular to the [2 2 0] direction.

5.2. Correcting thickness variations

Fig. 6 shows a test structure for the study of stress liners
consisting of a comb-like periodical array of etched silicon
trenches a few hundred nanometres deep and about 50-100 nm
wide [25]. The Si is covered by a capping layer (CESL) of a few tens
of nanometres thick of silicon nitride followed by silicon oxide.
The processing results in a high level of stress in the nitride layer,
which in turn deforms the silicon. The microscopy specimen was
prepared by FIB and shadowing effects are visibly etched into
the substrate (see Fig. 6a). These localised thickness changes will
affect the phase measurements.

100nm

A dark-field hologram obtained using a (1 1 1) diffracted beam
is shown in Fig. 6b. It shows the characteristic feature of a dark-
field hologram in that there are no interference fringes in the
vacuum (see inset), excepting the Fresnel fringes from the biprism.
The hologram is analysed as usual by masking the side band in
Fourier space which points towards the substrate to produce the
phase (Fig. 6¢) and amplitude maps (Fig. 6d). The deformation and
rotation of the (11 1) lattice planes is determined directly by
numerical differentiation of the phase (Fig. 6e and f). The artefacts
from the specimen preparation can be clearly seen in the substrate
in the phase and deformation maps. High-frequency artefacts are
also present from the Fresnel fringes as vertical oscillations.

According to the theory, the transmitted beam should not
contain any geometric phase components but only the crystalline
and electrostatic phases. Indeed, the electrostatic phase should be
the same for the transmitted and diffracted beams. We therefore
can propose a correction procedure for thickness variations such
as the ones shown. The idea is to acquire a bright-field hologram
for the same diffraction conditions as the dark-field hologram and

Fig. 6. Dark-field holography of a strained-Si test structure with stress liners (CESL): (a) conventional bright-field image, FIB shadowing marked; (b) dark-field hologram
from (1 1 1) diffracted beam, Fourier transform and zoom inset; (c) phase; (d) amplitude; (e) local variation in planar spacing; (f) local lattice plane rotation.

-THE |1

Fig. 7. Correction of thickness artefacts: (a) dark-field electron hologram; (b) bright-field hologram; (c) dark-field phase; (d) bright-field phase; (e) subtraction of the dark-
field and bright-field phases. Ovals indicate principle artefacts. The Fresnel fringes have been removed by Fourier filtering.
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Fig. 8. Rigid-body rotation maps before (a) and after (b) removal of the thickness variation artefacts. The Fresnel fringe artefacts have also been removed from (b) by

Fourier filtering.

subtract the two resulting phase images. The phase term from the
mean inner potential should cancel.

To test this procedure a bright-field holograms was taken of
the same area of the sample in a repeat experiment (Fig. 7b).
Fig. 7e shows the result of the subtraction of the dark-field phase
(Fig. 7c) and the bright-field phase (Fig. 7d). It can be seen that the
artefacts due to the thickness variations have been successfully
removed, and is confirmed by the rotation maps (Fig. 8). For this
example we have also removed the Fresnel fringe artefacts by
Fourier filtering.

6. Conclusions

Geometric phase can be placed in a theoretical framework
regrouping measurements of electrostatic, magnetic and crystal-
line phases. This allows the identification of errors, both systema-
tic and random, and suggests ways of correction and measurement
such as the use of bright-field holograms. The dark-field electron
holography technique is most reliable under uniform diffraction
conditions, preferably close to a two-beam Bragg condition, and
ultimately depends on the quality of sample preparation. Further
theoretical work is required to better quantify the different
random and systematic errors. On the experimental side, future
improvements include the development of brighter electron
sources to enlarge the fields of view and increase precision, sample
preparation to limit sample bending, and aberration-corrected
Lorentz modes to increase spatial resolution.
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